**An Object Oriented Bidirectional Compiler** Abstract 4 sentences ============================= Bidirectional Comilers (BdX) Have the property of taking a source code. Transform to another representation like tree, a diagram an other language. And then modify the target language and get back the code transparently. However, most of the research on bidirectional compiles has been done in Functional programming languages with only one paper allowing for the translation Between a subsect of Java and HTML. So the question is: Can an industrial language OOP language like Eiffel offer advantages for the creation of BiDirectional compilers? Introduction (1 page) =============================================================================== Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. \begin{equation} \iint xy^2\,dx\,dy = \frac{1}{6}x^2y^3 \end{equation} Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. \begin{equation} u=\frac{-y}{x^2+y^2}\,,\quad v=\frac{x}{x^2+y^2}\,,\quad\text{and}\quad w=0\,. \end{equation} The prablem (1 page) =============================================================================== My idea (2 pages) ============================================================================== The details (5 pages) =============================================================================== Related Work (1-2 pages) =============================================================================== Conclusions and further work (0.5 pages ============================================================================== Subsection ------------------------------------------------------------------------------- Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. \begin{equation} \begin{bmatrix} 1 & x & 0 \\ 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} 1 \\ y \\ 1 \end{bmatrix} =\begin{bmatrix} 1+xy \\ y-1 \end{bmatrix}. \end{equation}